Abstract

The unique InVO4 mesocrystal superstructure, particularly with cubical skeleton and hollow interior, which consists of numerous nanocube building blocks, closely stacking by stacking, aligning by aligning, and sharing the same crystallographic orientations, is successfully fabricated. The synergy of a reaction-limited aggregation and an Ostwald ripening process is reasonably proposed for the growth of this unique superstructure. Both single-particle surface photovoltage and confocal fluorescence spectroscopy measurements demonstrate that the long-range ordered mesocrystal superstructures can significantly retard the recombination of electron-hole pairs through the creation of a new pathway for anisotropic electron flow along the inter-nanocubes. This promising charge mobility feature of the superstructure greatly contributes to the pronounced photocatalytic performance of the InVO4 mesocrystal toward fixation of N2 into NH3 with the quantum yield of 0.50% at wavelength of 385nm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call