Abstract
The preparation of hollow inorganic capsules of defined shape, composition and with tailored properties is of immense scientific and technological interest. This chapter highlights a recently developed layer-by-layer (LbL) assembly process for the creation of coated colloid particles (core-shell colloids), which are subsequently converted into hollow inorganic capsules. Sacrificial core template particles are coated with multiple layers of preformed inorganic nanoparticles, or inorganic molecular precursors, and oppositely charged polyelectrolyte, utilizing electrostatic attraction for construction of the layers on the particles. Calcination of the core-shell nanocomposite colloids yields hollow inorganic capsules of defined size and composition, determined by the template diameter and the nature of the charged inorganic species deposited, respectively. The capsule wall thickness can be controlled with nanoscale precision through the number of layers formed on the particles. The flexibility of the LbL strategy is demonstrated by a number of examples of nanoengineered hollow capsules. The creation of macroporous materials from the hollow capsules is also described. Additionally, the potential applications of the hollow colloid particles prepared are briefly discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.