Abstract

A task-specific functionalized hyper-cross-linked polymer (HCP) with hollow spherical structure was synthesized by an easily accessible Friedel–Crafts reaction-based approach. A harmonious coexistence of acid (sulfonic acid) and base (amine) sites on a microporous organic material was achieved. The acid–base bifunctional HCP catalyst (HCP–A–B) structure was fully characterized by many physicochemical methods. In the subsequent tandem reactions (hydrolysis/Henry and hydrolysis/Knoevenagel reactions), the HCP–A–B catalyst displayed high catalytic efficiency and chemical stability toward water or organic solvent. These HCP–A–B catalyst characteristics led to the development of a previously unreported transformation of 2-ethoxy-3,4-dihydropyran derivative to a 2-cyclohexen-1-one derivative through a tandem reaction involving water-assisted ring-opening hydrolysis of the dihydropyran, an intramolecular aldol reaction, and a dehydration reaction. In all of these reactions, the bifunctional HCP–A–B catalyst can ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.