Abstract

Humidity control is an important factor affecting the overall sustainability, productivity, and energy efficiency of controlled environment agriculture. Liquid desiccants offer the potential for pinpoint control of humidity levels in controlled environments. In the present work, a dehumidification processes utilizing liquid desiccants pumped through the lumens of triple-bore PVDF hollow fibre membranes is implemented in a bench scale controlled environment agriculture system. Hydrophobic hollow fibre membranes were combined into an array and placed near the crops. Concentrated magnesium chloride liquid desiccant solution with a low vapour pressure was pumped through the hollow fibre lumens. The dehumidification permeance rate responded dynamically to the changing transpiration rate of the plants, as influenced by changes in environmental factors such as light, temperature, and vapour pressure. The dehumidification permeance rate increased from an average of 0.26–0.31 g m−2 h−1 Pa−1 as the velocity of the liquid desiccant through the hollow fibres increased from 0.023 to 0.081 m s−1. Humidity levels were targeted to be maintained within a range of 70–90% relative humidity at 23 °C. The membrane-based liquid desiccant system was demonstrated to successfully control humidity within a bench-scale controlled environment agricultural setup.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call