Abstract

Using histological and HPLC methods, we examined the influence of hollow fiber membrane transport properties on encapsulated PC12 cell biomass, proliferation and the release of dopamine over 4 weeks in culture. Our data indicated that encapsulated cell biomass, the number of proliferating cells, and the quantity of dopamine released increased as a function of increasing hollow fiber encapsulation membrane diffusive permeability. Overall the percentage of viable cells and the biomass architecture, however, was not significantly affected by differences in membrane transport. When compared to membrane sieving properties, membrane diffusive transport and membrane hydraulic permeability were better indictators of biomass size, proliferating cell number, and dopamine release from encapsulated cells. Studies examining the sustained release of DA from membranes of differing permeability suggest that membrane diffusive permeability can be used to regulate the quantity of small molecules released per unit time at steady state, and should be considered when dosing is an important determinant of implant efficacy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.