Abstract
Therapeutic drug monitoring (TDM) is a personalized care tool based on the determination of a target drug concentration in human serum. An antidepressant drug of interest for such investigations is fluoxetine (FXT), due to a severe impact of genetic polymorphisms on its metabolism. A bioanalytical method employed for TDM purposes must exhibit satisfactory selectivity and detectability, which becomes more difficult due to highly complex biological matrices. In this study, a highly selective bioanalytical method for the determination of FXT in human serum is proposed, which provides excellent clean-up efficiency based on a low cost hollow fiber liquid-phase microextraction (HF-LPME) sample preparation step and nano-liquid chromatography coupled to high-resolution mass spectrometry (nano-LC-HRMS). HF-LPME was performed using a two-phase “U” configuration, with 6 cm fiber, 20 µL of 1-octanol acting as supported liquid membrane, and ammonium hydroxide (pH 10) as the donor phase with NaCl (10 % m/v) and methanol (5 % v/v) as additives, requiring only 250 µL of the sample. The procedure was conducted for 30 min under a 750 rpm stirring rate. Gradient elution was carried out employing an acetonitrile–water as mobile phase, the composition of 30:70 to 100:00 (v/v) for 15 min, using formic acid 0.1 % (v/v) as an additive. MS1 was acquired in an Orbitrap mass analyzer, while MS2 was acquired in a linear trap quadrupole. Satisfactory linearity (Pearson’s r = 0.99709) was obtained for a concentration range of 0.02 to 2.5 µg mL−1, which is compatible with the therapeutic and toxic range for FXT. The developed method presents adequate precision (1.61 to 7.45 %) and accuracy (95 to 114 %) and allows the dilution of high concentration samples in a 1:4 ratio (v/v), enabling its application for forensic serum samples. To our knowledge, this is the first study reporting a method based on HF-LPME and nano-LC-HRMS with any analytical purpose, especially with a TDM focus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.