Abstract

Abstract: Owing to the advantages of rapid adsorption and desorption characteristics, excellent gas separation performance, as well as good thermal and chemical resistance, carbon molecular sieve (CMS) membranes have been developed as a promising gas separation tool. Over the past 30 years, hollow fiber carbon molecular sieve (HFCMS) membranes have become the preferred choice for industrial applications due to their high surface area-to-volume ratio and the ability to assemble lightweight membrane modules. The gas transport mechanism behind the HFCMS is dominated by molecular sieving function. They can be prepared by pyrolysis of the polymeric hollow fiber precursors. Post-treatments can tailor the ultramicropores structure to improve the separation performance. This paper aims to review the recent progress in the preparation of HFCMS membranes from aspects of precursor selection, pyrolysis conditions and post-treatment. Moreover, a brief perspective in terms of future investigation of HFCMS membrane is also proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call