Abstract
In this work, hollow Fe2O3/Co3O4 microcubes have been successfully synthesized through a hydrothermal method followed by an annealing process using metal-organic framework of Prussian blue as a soft template. The morphologies, microstructures, surface area and element compositions have been carefully characterized by a series of techniques. Meanwhile, compared with that of pure Fe2O3 and Co3O4, the gas sensor based on the hollow microcubes exhibits enhanced sensing performances towards acetone, e.g., a higher response of 21.2 and a shorter response time of 5 s towards 20 ppm acetone at a relatively low working temperature of 200 °C. Moreover, the hollow microcubes-based gas sensor still shows perfect long-term stability, excellent repeatability and the ability of sub-ppm level detection, which provides a possibility for its application in real life. The enhanced gas sensing performances can be attributed to the hollow structure with a high surface area and the formed p-n heterojunctions within the microcubes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.