Abstract
We propose a simple hollow-core circular lattice photonic crystal fiber (PCF) based surface plasmon resonance (SPR) refractive index sensor. The sensing performance is investigated by using the finite element method (FEM). Silver is used as the plasmonic material for this design, which is placed on the outer surface of the PCF to facilitate the fabrication. The proposed sensor shows a maximum wavelength sensitivity of 4200 nm/RIU with a sensor resolution of 2.38 × 10−5 RIU. Besides, a maximum amplitude sensitivity of 300 RIU−1 and a resolution of 3.33 × 10−5 RIU is reported for an analyte refractive index of 1.37. Moreover, the effect of varying structural parameters on the sensing performance such as pitch, air hole diameter and silver layer thickness are also discussed thoroughly. Sensitivity analysis of the proposed sensor is performed in order to investigate the impact on loss depth and amplitude sensitivity. Thanks to high sensitivity and linearity characteristics, the proposed sensor can be potentially employed in practical bio-sensing and chemical sensing applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.