Abstract

Due to the rapid development of electronic devices, the electromagnetic pollution has become increasingly serious. Developing electromagnetic wave absorption (EWA) materials with lightweight, strong absorption capacity and wide effective absorption bandwidth (EAB) becomes a research hotspot. In this work, the hollow-Fe3O4@polypyrrole (HFO@PPy) composites with core-shell structure were successfully synthesized by in situ polymerization method. The electromagnetic parameters could be adjusted by controlling the content of HFO in HFO@PPy. In addition, HFO@PPy composites show both dielectric and magnetic losses. The synergistic effect of both two losses contributes to an enhanced electromagnetic attenuation. The enhanced impedance matching is achieved by the composition (HFO and PPy) and designed unique structure (core-shell and hollow structure). The maximum reflection loss (RL) and EAB are −52.01 dB and 2.72 GHz at 3.1 mm for 60.0 wt% HFO@PPy composites. Therefore, by reasonably regulating the component content and optimizing the structural design, the EWA performance of HFO@PPy composites could be effectively improved, providing a significant inspiration for fabrication of microwave absorbers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.