Abstract
Transition metal sulfides, which possesses high ionic conductivity and high theoretical capacity, have attracted tremendous interest in the field of lithium ion batteries (LIBs). However, their application suffers from severe volume changes and structure deterioration during charge-discharge process. Herein, hollow core-shell structured CNT/PAN@Co9S8@C coaxial nanocables were synthesized. The unique structure can provide more channels for Li+ ions/electrons diffusion and alleviate volume swelling during charge/discharge process. As a result, CNT/PAN@Co9S8@C exhibits good cycling performance (>700 mAh g−1 at 0.1 A g−1) and rate capability (455 mAh g−1 at 2 A g−1 after 100 cycles). The impressive results demonstrate CNT/PAN@Co9S8@C is a promising candidate for anode material in high-performance LIBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.