Abstract

We demonstrate the potential of applying hollow core and negative curvature optical fibers (HC-NCF) as efficient sensors to monitor the concentration of three high-toxicity gases: methane (CH4), carbon monoxide (CO), and nitrogen monoxide (NO). Numerical simulations demonstrate that the insertion of holes in such fibers guarantees the entry of these gases into their hollow core and allows strong interaction of these gases with the low-loss mode propagating in the HC-NCF. This interaction between light and gas in spectral regions with high gas absorption allows one to monitor reduced concentrations of these gases present in the environment simply by monitoring the optical power at the fiber output. The results show a linear behavior of propagation losses as a function of concentrations of 0% to 100% of CO and NO gas, and for concentrations of 0% to 5% of CH4 gas. This linearity between the propagation losses and the variation of the concentrations of gases in the environment can promote its application in healthcare and environment, to monitor low concentrations of gases ensuring high speed and accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.