Abstract

Barcode particles have a demonstrated value for multiplexed high-throughput bioassays. Here, a novel photonic crystal (PhC) barcode is presented that consists of hollow colloidal nanospheres assembled through microfluidic droplet templates. Due to their gas-filled core, the resultant barcode particles not only show increased refractive index contrast, but also remain in suspension by adjusting the overall density of the PhC to match that of a detection solution. In addition, magnetic nanoparticles can be integrated to give the barcodes a magnetically controllable motion ability. The encoding ability of the barcodes is demonstrated in microRNA detection with high specificity and sensitivity, and the excellent features of the barcodes make them potentially very useful for biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.