Abstract

One plausible approach to endow nanocrystals with both enhanced catalytic activity and stability for the electrooxidation of liquid fuels is to chemically control the crystal structures of nanoparticles. To date, core-shell and alloy structures have been demonstrated to offer generally two precious opportunities to design highly efficient nanocatalysts for the electrooxidation reaction of organic molecules. We herein combine these two advantages and develop a general method to successfully synthesize hollow AuxAg/Au core/shell nanospheres with a high yield approaching 100% via a combined seed mediated and galvanic replacement method. The results from the electrochemical measurements have revealed that this as-obtained hollow AuxAg/Au core/shell nanosphere exhibited considerably high electrocatalytic performance towards ethylene glycol and glycerol oxidation with mass activity of 4585 and 3486 mA mgAu-1, which were 5.3- and 5.8-fold higher than that of pure Au. We trust this strategy may be extended to the syntheses of other multimetallic nanocatalysts with such fascinating nanostructures and the as-obtained hollow AuxAg/Au core/shell nanospheres can be well applied to serve as highly desirable anode catalysts for the electrooxidation of ethylene glycol and glycerol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.