Abstract
Inspired by the vesicular structure of alveolus which has a porous nanovesicle structure facilitating the transport of oxygen and carbon dioxide, we designed a hollow nanovesicle assembly with metal-encapsulated hollow zeolite that would enhance diffusion of reactants/products and inhibit sintering and leaching of active metals. This zeolitic nanovesicle has been successfully synthesized by a strategy which involves a one-pot hydrothermal synthesis of hollow assembly of metal-containing solid zeolite crystals without a structural template and a selective desilication-recrystallization accompanied by leaching-hydrolysis to convert the metal-containing solid crystals into metal-encapsulated hollow crystals. We demonstrate the strategy in synthesizing a hollow nanovesicle assembly of Fe2O3-encapsulated hollow crystals of ZSM-5 zeolite. This material possesses a microporous (0.4-0.6 nm) wall of hollow crystals and a mesoporous (5-17 nm) shell of nanovesicle with macropores (about 350 nm) in the core. This hierarchical structure enables excellent Fe2O3 dispersion (3-4 nm) and resistance to sintering even at 800 °C; facilitates the transport of reactant/products; and exhibits superior activity and resistance to leaching in phenol degradation. Hollow nanovesicle assembly of Fe-Pt bimetal-encapsulated hollow ZSM-5 crystals was also prepared.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.