Abstract

Consisted of closely packed nanoflakes, γ-Al2O3 hollow microspheres with ca. 4–6 μm in diameter, and 500–700 nm in shell thickness have been hydrothermally synthesized through utilizing Al(NO3)3·9H2O as precursor, urea as precipitant agent and sulfate K2SO4, (NH4)2SO4, or KAl(SO4)2·12H2O as additive, followed by a calcination step. The samples were further characterized by thermogravimetric analysis, scanning electron microscope, x-ray powder diffraction, nitrogen adsorption, and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) of adsorbed CO etc. The morphology of alumina products was strongly dependent on the presence of SO4 2−. Then via a deposition–precipitation method, 3 wt.% Au nanoparticles supported on γ-Al2O3 hollow microspheres exhibit excellent performance with a complete CO conversion at 0 °C (T 100% = 0 °C) and 50 % conversion at −25 °C (T 50% = −25 °C). The good catalytic activity is associated with the special hollow microsphere structures assembled by nanoflakes of γ-Al2O3 support. The DRIFTS confirms the presence of Auδ+ and Au0 on the surface of γ-Al2O3 hollow microspheres. As a contrast, Au catalyst prepared using alumina support with undefined morphology shows low activity under the same catalytic test conditions (T 100% = 190 °C, T 50% = 80 °C).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.