Abstract

Novel hollow Ag/MnO2 nanostructures with controlled shell composition and structure were designed and synthesized. In the present synthetic procedure, silver nanocrystals were oxidized by KMnO4 , and MnO2 was heterogeneously formed on the surface of silver nanocrystals, then released Ag+ was photoreduced to silver adjacent to MnO2 . By simply changing the photoreduction moment, simultaneously with or after the addition of KMnO4 , hollow Ag/MnO2 structures with different shell architectures-a monolayered shell composed of evenly mixed silver and MnO2 and a double-layered shell composed of an inner MnO2 layer and an outer silver layer-can be obtained. Furthermore, the morphology of the hollow structure can be tuned by selecting different silver precursors, and the ratio of silver to MnO2 in the shell can also be controlled by adjusting the ratio in the original reaction mixture. Electrochemical measurements revealed significantly enhanced catalytic performance in the oxygen reduction reaction for the prepared hollow structures. Compared with the Ag/MnO2 composite, the onset potentials positively shift by about 50.0 mV and limiting current densities are nearly 2.0 times higher.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.