Abstract

High-pressure and high-temperature experiments on the KAlSi 3O 8 composition were conducted in a laser-heated diamond-anvil cell at pressures up to 128 GPa, which correspond to the lowermost mantle conditions. In situ synchrotron X-ray diffraction measurements revealed that the hollandite II phase in KAlSi 3O 8 with a monoclinic symmetry of I2/ m was stable over the entire range of mantle conditions, and the tunnel structure formed by the double chains of edge-sharing (Si,Al)O 6 octahedra, which could accommodate a larger cation such as potassium, was sustained. The (Si,Al)O 6 octahedra in the KAlSi 3O 8 hollandite II phase showed a similar compression behavior to those in high-pressure silicate structures, such as rutile-type and perovskite-type phases, and were found to be less compressible than the KO 8 polyhedra. The KAlSi 3O 8 hollandite II phase is a potential host mineral for potassium under lower mantle conditions and, therefore, may have a significant influence on geochemistry if potassium feldspar KAlSi 3O 8 in the Earth's crust is transported into the Earth's mantle through subduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.