Abstract

Charge carrier events across organic electronics are ubiquitous, and the derived optimization plays a crucial effect on improving the performance of organic electronics. Herein, a two-dimensional material (Ti3C2Tx) is incorporated into titanium dioxide (TiO2) to impart the Ti3C2Tx/TiO2 hybrid film enriched hydroxy group distribution, defect-negligible surface, upshifted work function, and enhanced conductivity yet electron mobility versus the pristine TiO2 film. Therefore, intensified photon-harvesting ability, reduced charge carrier recombination, and efficient charge carrier collection are realized for dye-sensitized solar cells (DSSCs) based on the Ti3C2Tx/TiO2 hybrid photoanode relative to control ones. Consequently, the modified DSSCs based on Z907 deliver superior efficiencies of 10.39 and 29.68% under 100 mW/cm2 illumination and ∼1.9 mW/cm2 dim light, respectively, being the highest values of Z907-based DSSCs. However, control devices only obtain lower efficiencies of 8.06 and 23.91% when undergoing the abovementioned illumination. On the other hand, the self-powered homologous photodetectors with the hybrid film as an electron-transporting layer present enhanced detectivity (1.69 × 1011 Jones) and a shortened responsivity of 0.26 s versus that of control ones (1.39 × 1011 Jones and 0.35 s). Our work implies that the Ti3C2Tx/TiO2 hybrid film features high potential for improving the performance of organic electronics for its effect of holistically optimizing charge carrier dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.