Abstract
We introduce holistic in-database query processing over information extraction pipelines. This requires considering the joint conditional distribution over generic Conditional Random Fields that uses factor graphs to encode extraction tasks. Our approach introduces Canopy Factor Graphs , a novel probabilistic model for effectively capturing the joint conditional distribution given a canopy clustering of the data, and special query operators for retrieving resolution information. Since inference on such models is intractable, we introduce an approximate technique for query processing and optimizations that cut across the integrated tasks for reducing the required processing time. Effectiveness and scalability are verified through an extensive experimental evaluation using real and synthetic data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.