Abstract

Since sustainability and environmental issues rose lately, lightweighting has been the point of interest for automotive and aerospace sectors. Lightweighting reduces the fuel consumption of the vehicles and as a result of this reduces emissions. Aluminum, especially wrought aluminum alloys, have large potentials for dramatic weight reduction of structural parts while maintaining the safety and performance. Wrought aluminum alloys are used in automotive skin, bumpers and suspension parts etc. Lightweight suspension parts improve the ride quality and handling, additional to fuel consumption and emission reduction. Holistic life cycle approach takes into account the material flows and related information flows in order to achieve these material flows through the life cycle of the components as well as performance characteristics not only in technical and economic terms but also environmental and social terms. It is necessary to have seamless information flow through the life cycle of the components that could be enabled by the closed-loop product life cycle management (PLM). Closed-loop PLM may also help collection of life cycle information which is necessary to generate performance characteristics and distribution of performance characteristics among life cycle actors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.