Abstract
In this contribution, a holistic energy flow analysis of a solar driven pilot plant for green hydrogen production using two-step thermochemical cerium-based redox cycles is carried out. The plant consists of a heliostat field, a large-scale inert gas reactor, an efficient fluid heat recovery system and an electrical vaporizer for steam generation. The system behaviour is physically described, and energy flows are quantified using a complex simulation model considering material and geometric properties of the complete system design. The system energy flow and corresponding impact on plant efficiency is thoroughly analysed with emphasis on plant design, operational strategy, and influence of the crucial control parameters. Influences of a heat recovery system and the size of various types of heat losses are investigated, potential efficiency improvements are revealed and useful possibilities for plant design and material modifications are discussed. The transient system behaviour is investigated by varying temperatures and mass flow rates in a broad practicable range to gain more insight in efficient reactor design and plant control. Two temperature swing strategies are investigated in more detail, which are by far more efficient than any near-isothermal or isothermal strategy for this application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.