Abstract

Spinal Cord Injuries (SCIs) that result from trauma can cause the death of nerve cells and lead to distal neuronal death. The hostility of the lesion microenvironment imposes multiple conditions that must be met to achieve functional recovery. Considerable research indicated interactions and signaling, such as supporting cells, extracellular matrix, neurotrophic factors and biodegradable polymers for axonal regeneration. In recent years, researchers have been seeking novel biomaterials that are capable of stimulating cellular regeneration and promoting functional recovery. The ability of various biomaterials to create bridging structures and facilitate axonal growth has also been investigated. In this manuscript, we outline the progress researchers have made in developing holistic approaches to axonal regeneration in cases of spinal cord injury. We report on a number of therapeutic methods that could be used to promote neurological recovery and examine their clinical applicability. We also share a number of recent insights that have enhanced the feasibility of multiple channel bridges in the treatment of SCI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.