Abstract

The following paper examines the practicality of a methodical approach for energy-flexible and energy-optimal operation in the field of metal-cutting production. The analysis is based on the example of a grinding machine and its central cooling-supply system. In the first step, an energy-flexibility data model is built for each subsystem, which describes energy flexibility potentials generically. This is then extended to enable combined energy cost-optimal production planning. As a basis for the links between the data model representations, the cold flows between the subsystems are modeled using parameter-estimation methods, which have a mean absolute error of only 2.3 percent, making the subsequent installation of heat meters unnecessary. Based on the presented approach, the results successfully validate the possibility of energy-flexible cost-optimal and sensor-reduced production planning by reducing energy costs by 6.6 percent overall and 1.9 percent per workpiece produced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.