Abstract
Abstract This paper is concerned with the generalized dissipativity analysis for the recurrent neural networks (RNNs) with time-varying delays. The generalized dissipativity analysis contains a few previous known results, such as the passivity, [ τ j − 1 , τ j ] , -dissipativity, H∞ performance and j = 1 , … , p , performance in a unified framework. The delay interval with fixed terminals is changed into a dynamical one with adjustable delay interval based on convex combination technique (CCT), which is called adjustable delay interval method (ADIM). A novel augmented Lyapunov–Krasovskii functional (LKF) comprising triple integral terms and considering more information about neuron activation functions is constructed, in which the integral interval associated with delayed variables is not fixed. We give some sufficient conditions in terms of linear matrix inequalities (LMIs) to guarantee stability and generalized dissipativity of the considered neural networks. Finally, numerical examples are provided to demonstrate the effectiveness and less conservative of the obtained theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.