Abstract

A novel “egg tray” hierarchical architecture of confining and distributing nano-sulfur into a 3D holey graphene (HG) framework with polyaniline crosslinking (3DHG/NS/CPANI) via photo-assisted method was designed for high-mass-loading Li−S batteries cathode. Notably, HG contains both conductive skeletons as electron transfer paths and abundant void spaces in favor of homogenous sulfur anchoring. This configuration improves the contact between nano-sulfur and graphene for effective charge transportation and provides buffering space for volume variations during electrochemical processes. Moreover, a facile photo-assisted method was developed to cross link HG with polyaniline to act as an efficient polysulfide adsorbent, allowing nano-sulfur (NS) to be firmly embedded into the holes of graphene through physical and chemical effects, thus prohibiting the dissolution and shuttle effect of polysulfide. Considering these advantages, the prepared 3DHG/NS/CPANI electrode exhibited excellent performance with high sulfur utilization and specific capacity, resulting in specific discharge capacities at 0.5 and 1C of 1082 and 921 mAh-1 , respectively, and small capacity decay of 0.04% per cycle over 500 cycles at 1C. The strategy in this work, which synergistically combines morphology control, nano-sulfur positioning, and structural engineering to enhance the electrochemical performance for LSB, will offer a valuable reference to energy storage and conversion advances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.