Abstract

A new side-chain polymer (X-TPACz) bearing hole-transporting pendant groups accompanying a thermally crosslinkable entity was synthesized using N-([1,1'-biphenyl]-4-yl)- N-(4-(9-(4-vinylbenzyl)-9 H-carbazol-3-yl)phenyl)bicyclo[4.2.0]octa-1(6),2,4-trien-3-amine (6) via addition polymerization. The X-TPACz could be spontaneously crosslinked without using any further reagents and showed a good film-forming property upon low-temperature thermal treatment. The thermal curing temperature for the X-TPACz film was optimized to be 180 °C based on a differential scanning calorimetry thermogram. Moreover, the thermal degradation temperature of X-TPACz measured to be over 467 °C using thermogravimetric analysis demonstrated that it shows excellent thermal stability. In particular, X-TPACz exhibits the highest occupied molecular orbital (HOMO) energy level to be -5.26 eV, which is beneficial for facile hole injection and transportation. Consequently, the thermally activated delayed fluorescence organic light-emitting diodes fabricated using X-TPACz as the hole-transporting material showed state-of-the-art performances with a low turn-on voltage ( Von) of only 2.7 V and a high external quantum efficiency (EQE) of 19.18% with a high current efficiency (CE) of 66.88 cd/A and a high power efficiency (PE) of 60.03 lm/W, which are highly superior to those of the familiar poly(9-vinylcarbazole) (PVK)-based devices ( Von = 3.9 V, EQE of 17.42%, with CE of 58.33 cd/A and PE of 33.32 lm/W). The extremely low turn-on voltage and high EQE were found to be due to the higher-lying highest occupied molecular orbital energy level ( EHOMO = -5.23 eV) and better hole-transporting property of X-TPACz than those of PVK.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call