Abstract

Photoelectrochemical water splitting is a promising approach to produce green and renewable hydrogen fuel, alleviating the CO2 emissions, air pollution, and energy crisis. However, the efficiency is limited by the recombination of photogenerated carriers and the losses of holes, resulting in a mismatch between the rates of water oxidation and reduction reactions. This article starts with a discussion of the principle of photoelectrochemical water splitting, highlighting the role and importance of holes, and then summarizes the development of the hole transport layer, with a focus on the classification of the hole transport layer, the structure and properties of common hole transport materials, and the construction and improvement of the hole transport layer. Finally, it is concluded with a summary and perspective of strategies for the future development of the hole transport layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.