Abstract
The time-of-flight (TOF) transients of solution-cast, free-standing films of N,N′-diphenyl-N,N-bis(3-methylphenyl)-[1,1′-biphenyl]-4,4′diamine (TPD) in bisphenol A polycarbonate (PC) have been studied using electron gun induced charge generation. This molecularly doped polymer (MDP) has been shown to exhibit perfectly flat plateaus on its time-of-flight curves with optical excitation. Our TOF results with continuously changing electron energies, as well as numerical calculations using a multiple trapping model with a Gaussian trap distribution (MTMg), suggest that charge carrier transport in this molecularly doped polymer is nonequilibrium and the flat plateaus can be explained by the presence of a thin surface layer depleted of transport material. The depleted surface layers on samples of this molecularly doped polymer are extremely thin (less than 0.12 μm), with those relating to the release side (contacting a substrate during coating/drying procedure) being much smaller than for the free side exposed t...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.