Abstract

Lead halide perovskites have gained attention as an active material in solid-state dye-sensitized photovoltaics due to their high absorption of visible light and long charge-transport lengths. In perovskite-based dye-sensitized photovoltaic architectures the perovskite material is typically paired with a hole-transport material, such as spiro-OMeTAD, which extracts a hole from the photoexcited perovskite to generate free charge carriers. In this study, we explored two competing charge-transfer pathways at the interface between lead halide perovskite and spiro-OMeTAD: “through-bond” and “through-space”. For the through-bond pathway we use a segment of spiro-OMeTAD that contains methoxy linker groups, which will be referred to as “dye with methoxy linker groups” (DML). For the through-space pathway we use a segment of spiro-OMeTAD with removed linker groups, triphenylamine, which will be referred to as “dye”. Four atomistic models were studied: (I) a periodic cesium lead iodide (CsPbI3) perovskite nanowire ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call