Abstract
The present study focuses the effect of four input controllable laser cutting variables on the hole taper and hole circularity in laser trepan drilling of polymeric materials. Experiments have been conducted on acrylonitrile butadiene styrene (ABS) and polymethyl methacrylate (PMMA) polymer sheets. Laser power, assist gas pressure, cutting speed and stand-off distance were selected as independent process variables. Three different holes of diameters 2mm, 4mm and 6mm were drilled in these work materials of 5mm thickness. A Taguchi L9 orthogonal array with four factors and three levels of each factor was used to plan and conduct the experiments in order to obtain required information with reduced number of experiments. The process performance was ascertained in terms of hole taper and hole circularity. Initial analysis involved in determining the effect of the four process variables on hole taper and circularity for these two polymers at three different hole diameters. From ANOVA analysis, the optimum levels of the four process variables with respect to materials and hole diameters were evaluated. As it was found that the optimum levels of four process variables were different for different hole size and materials, additional analysis was conducted to incorporate the effect of material and hole diameter on the hole taper. From the analysis, the optimum combinations were obtained at compressed air pressure of 2.0bar, laser power of 500W, cutting speed of 0.6m/min, stand-off distance of 5.0mm, hole diameter of 2.0mm and material of PMMA. These combinations produced the minimum taper in the hole. The circularity of the hole was more at the entrance than the exit when ABS polymer was laser drilled while in PMMA, the hole was more circular at the exit than the entrance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.