Abstract

We have achieved peak hole mobility enhancement factors of 5.15 over bulk Si in metal-oxide-semiconductor field-effect transistors (MOSFETs) by combining tensile strained Si surface channels and compressively strained 80% Ge buried channels grown on relaxed 50% Ge virtual substrates. To further investigate hole transport in these dual channel structures, we study the effects of strain, alloy scattering, and layer thickness on hole mobility enhancements in MOSFETs based upon these layers. We show that significant performance boosts can be obtained despite the effects of alloy scattering and that the best hole mobility enhancements are obtained for structures with thin Si surface layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.