Abstract
We study electron antidots using a Hartree-Fock approach and an electron-hole transformation that maps the electron antidot into a quantum dot with finite number of holes. We investigate hole maximum density droplets of a bell shape antidot potential in the integer quantum Hall regime with the filling factor two. Here we give the reasons for why a bell shape antidot potential can lead to spin flip transitions, which can cause the Kondo effect. We identify maximum density droplet states corresponding to the spin states of the Anderson impurity that describe the Kondo effect of the antidot.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.