Abstract

We present a study of the excited state relaxation dynamics of the photosensitizer P1 used in p-type dye-sensitized solar cells. Comparative femtosecond fluorescence upconversion measurements in solution and in films show that the dye undergoes a picosecond electronic relaxation from the bright Franck-Condon (FC) state to a low-emitting charge-transfer (CT) state in polar environment. The fluorescence is moderately quenched in solution and on the mesoporous Al2O3 isolator but dramatically more on NiO semiconductor. We assign this sub-picosecond process to the hole injection thus confirming that the electron transfer is from the FC state directly into the NiO valence band.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call