Abstract

Majorana fermions were envisioned by Majorana in 1935 to describe neutrinos. Recently, it has been shown that they can be realized even in a class of electron-doped semiconductors, on which ordinary s-wave superconductivity is proximity induced, provided the time reversal symmetry is broken by an external Zeeman field above a threshold. Here we show that in a hole-doped semiconductor nanowire the threshold Zeeman field for Majorana fermions can be very small for some magic values of the hole density. In contrast to the electron-doped systems, smaller Zeeman fields and much stronger spin-orbit coupling and effective mass of holes allow the hole-doped systems to support Majorana fermions in a parameter regime which is routinely realized in current experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.