Abstract

This brief deals with crack(s) emanating from a hole in infinite plate subjected to uniform internal pressure. Such a crack problem is called a hole crack problem for short. By using a hybrid displacement discontinuity method (a boundary element method) proposed recently by Yan, three hole crack problems (an elliptical hole crack problem, a rhombus hole crack problem, and a triangle hole crack problem) in infinite plate subjected to uniform internal pressure are analyzed in detail. By changing hole geometry form and hole geometry parameters and by comparing the stress intensity factors (SIFs) of the hole crack problem with those of the center crack problem, the effect of the hole geometry form and hole geometry parameters on the SIFs is revealed. It is found that a hole has a shielding and an amplifying effect on the SIFs of crack(s) emanating from the hole. The shielding and amplifying effects are varied with hole geometry form and hole geometry parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.