Abstract
Na0.5Bi2.5Ta2O9-based piezoelectric ceramics, Na0.5-xBi0.5-xLixCexBi2Ta2-xScxO9-x (NBTO-x, x = 0–0.05), were synthesized by using a solid-state reaction process, and their electro-mechanical properties and electrical conduction behaviors were investigated in detail. The Li+/Ce3+/Sc3+ modification improved the electro-mechanical properties of the ceramics effectively, whereas further N2 or O2 annealing led to no obvious increase in piezoelectric coefficient (d33). The composition x = 0.03 ceramic with high temperature stability had a Curie point (Tc) of 784 °C and a d33 of 25.8 pC/N, and its electromechanical coupling factors, kp and kt, were 11.8% and 20.7%, respectively. Variable-atmosphere (air, O2 and N2) impedance data suggested that the NBTO-x ceramics were mainly p-type materials contributing from the bulk response, and the conducting species were holes (h•). Therefore, lower bulk resistivity (ρ) and lower activation energy (Ea) were associated with the treatment with higher PO2 (oxygen partial pressure). In addition, the O2 atmosphere had stronger impact on the conductivity of the pure NBTO than those of the acceptor NBTO-x, and the grain and grain boundary contributed to its resistivity together.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.