Abstract

The property of hole capture of quantum wells is important in the static properties of lasers above threshold, such as the differential efficiency and light output power. We investigate experimentally the hole capture rate and its influence on the carrier overflow in the optical confinement layers for compressive-strained, tensile-strained and unstrained GaInAs/GaInAsP/InP quantum-well lasers emitting at 1.5 μm by measuring the spontaneous emission from the optical confinement layers above threshold. The carrier density in the optical confinement layers increases with current owing to finite hole capture rates. This increase is dependent on well thickness and barrier height determined by the strain. This increase is comparable in the tensile-strained and unstrained lasers with relatively low threshold, while in the compressive-strained laser it is about double that in the other two types. The dependence of this increase on threshold carrier density is also observed, that is the carrier density in the optical confinement layers increases rapidly in high-threshold samples, in particular, in the tensile-strained laser with large hole barrier height. From these results, laser operation with high output power and high efficiency is expected by reducing threshold carrier density in the tensile-strained laser and by increasing well numbers in the compressive-strained laser as long as the inhomogeneous injection between wells is not severe. By fitting measurements with theory, the hole capture time is estimated as 0.1 to 0.25 ps in these strained and unstrained lasers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.