Abstract

Morphological development from droplet to particle during drying has strong influence on powder structure and functionality. We study the evolving morphological properties of whey protein droplets during single sessile droplet drying experiments as a well-defined model for spray drying. Sessile drying droplets were visualised with a camera and subjected to varying drying conditions such as temperature, initial protein concentration, presence of airflow and droplet rotation. The final particles were imaged by SEM and X-ray tomography. Under all conditions used, the droplets initially shrink steadily while at a specific point a hole nucleates. Subsequently, a vacuole develops until a rigid hollow particle is obtained. The location of the hole was found strongly dependent on the presence and the direction of the applied air flow. We hypothesise that in the early drying stage a skin forms, which becomes more rigid when the hole nucleates. The hole forms at the position where the local modulus of the skin layer is minimal and/or at the point below the skin where the local pressure is minimal, and that after the hole has nucleated, the vacuole develops mainly by evaporation of water through the hole.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.