Abstract

A range-wide phylogeographic study of the tundra shrew (Sorex tundrensis) was performed using cytochrome b and cytochrome oxidase I (COI) mitochondrial genes. The results based on 121 specimens from 42 localities demonstrate that the tundra shrew is divided into five main mitochondrial DNA phylogenetic lineages with largely parapatric distribution. In addition to a single Nearctic clade (Alaska) four Palearctic clades are identified: Western (Northen Urals, Kazakhstan, South-West Siberia), Eastern (from East Transbaikalia and the Middle Amur to Chukotka), South Central (Central Siberia, the Altai, the Dzhungarian Alatau) and North Central (Northern Siberia, Central Yakutia). Date estimates obtained by use of a molecular clock corrected for potential rate decay suggest Late Pleistocene age for the most recent common ancestor of all contemporary tundra shrew populations. Relatively high genetic divergence between phylogroups (0.95–1.6%) indicates that the observed phylogeographic structure was initiated by historical events that predated the Last Glacial Maximum. We assume that, being more cold- and arid-tolerant, tundra shrew underwent expansion during an early cold phase of the Last Glacial and spread through its recent range earlier than most of other Siberian red-toothed shrews. Comparative phylogeographic analysis of Siberian shrews and rodents suggests that evolutionary histories of species associated with azonal or open habitats show important differences compared to forest species. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101, 721–746.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call