Abstract

In this study, the self-assembled nanoparticles based on Hohenbuehelia serotina polysaccharides (QC-HSP NPs) were fabricated to encapsulate quercetin for improving its bioavailability. The structural characteristics, physicochemical properties as well as the cytotoxicity activities of QC-HSP NPs during gastrointestinal digestion in vitro were respectively investigated. The results showed that QC-HSP NPs possessed the spherical and smooth surface morphology, with the average particle size of 360 nm and zeta potential of −38.8 mV. Moreover, QC-HSP NPs had excellent physiochemical stabilities, and presented sustained-release characteristics during gastrointestinal digestion in vitro. Compared with undigested ones, QC-HSP NPs after gastrointestinal digestion exhibited the more significant anti-proliferative activity on HeLa cells through accumulation of intracellular ROS, arrest of cell cycle at G2/M phase by regulation of cyclin B1, CDK1, p53 and p21 and induction of apoptosis by ER apoptosis pathway. This study provides a new strategy for designing quercetin-loaded nanoparticles based on natural polysaccharides to improve the bioavailability of quercetin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.