Abstract

The Hofstadter model allows to describe and understand several phenomena in condensed matter such as the quantum Hall effect, Anderson localization, charge pumping, and flat-bands in quasiperiodic structures, and is a rare example of fractality in the quantum world. An apparently unrelated system, the relativistic Toda lattice, has been extensively studied in the context of complex nonlinear dynamics, and more recently for its connection to supersymmetric Yang-Mills theories and topological string theories on Calabi-Yau manifolds in high-energy physics. Here we discuss a recently discovered spectral relationship between the Hofstadter model and the relativistic Toda lattice which has been later conjectured to be related to the Langlands duality of quantum groups. Moreover, by employing similarity transformations compatible with the quantum group structure, we establish a formula parametrizing the energy spectrum of the Hofstadter model in terms of elementary symmetric polynomials and Chebyshev polynomials. The main tools used are the spectral duality of tridiagonal matrices and the representation theory of the elementary quantum group.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.