Abstract

Spinless, interacting electrons on a finite size triangular lattice moving in an extremely strong perpendicular magnetic field are studied in comparison to a square lattice. Using a Falicov–Kimball model, the effects of Coulomb correlation, magnetic field and finite system size on their energy spectrum are observed. Exact diagonalization and Monte Carlo simulation methods (based on a modified Metropolis algorithm) have been employed to examine the recursive structure of the Hofstadter spectrum in the presence of several electronic correlation strengths for different system sizes. It is possible to introduce a gap in the density of states even in the absence of electron correlation, which is anticipated as a metal to insulator transition driven by an orbital magnetic field. With further inclusion of the interaction, the gap in the spectrum is modified and in some cases the correlation is found to suppress extra states manifested by the finite size effects. At a certain flux, the opened gap due to magnetic field is reduced by the Coulomb interaction. An orbital current is calculated for both the square and the triangular lattice with and without electron correlation. In the non-interacting limit, the bulk current shows several patterns, while the edge current shows oscillations with magnetic flux. The oscillations persist in the interacting limit for the square lattice, but not for the triangular lattice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call