Abstract

The analysis of modulation of fibril formation helps to understand the mechanism of fibrillation processes besides opening routes for therapeutic intervention. Fibril formation was investigated with the N-terminal domain of the nuclear poly-A binding protein PABPN1, a protein in which mutation-based alanine extensions lead to the disease oculopharyngeal muscular dystrophy (OPMD). The disease is characterized by fibrillar inclusions consisting mainly of PABPN1. A systematic modulation of fibril formation kinetics was studied with trifluoroethanol, inorganic salts, low molecular weight organic substances, a poly-alanine peptide and anti-amyloidogenic compounds. Anions with salting out properties at high molar concentrations, poly-ethylene glycol and the poly-alanine peptide enhanced fibril formation rates. The effect of l-arginine on fibrillation rates depended on the counterion. Doxycycline and trehalose, compounds that have been found to mitigate OPMD symptoms in animal models, surprisingly accelerated fibril formation. Our results suggest that in the case of salts, primarily the salting out effects rather than electrostatic effects modulate fibril formation. The unexpected acceleration of fibril formation by trehalose and doxycycline questions the general view that these compounds per se impair fibril formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.