Abstract
AbstractOne of the most important results in domain theory is the Hofmann-Mislove Theorem, which reveals a very distinct characterization for the sober spaces via open filters. In this paper, we extend this result to the d-spaces and well-filtered spaces. We do this by introducing the notions of Hofmann-Mislove-system (HM-system for short) and $\Psi$ -well-filtered space, which provide a new unified approach to sober spaces, well-filtered spaces, and d-spaces. In addition, a characterization for $\Psi$ -well-filtered spaces is provided via $\Psi$ -sets. We also discuss the relationship between $\Psi$ -well-filtered spaces and H-sober spaces considered by Xu. We show that the category of complete $\Psi$ -well-filtered spaces is a full reflective subcategory of the category of $T_0$ spaces with continuous mappings. For each HM-system $\Psi$ that has a designated property, we show that a $T_0$ space X is $\Psi$ -well-filtered if and only if its Smyth power space $P_s(X)$ is $\Psi$ -well-filtered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.