Abstract

Cubic fourfolds behave in many ways like K3 surfaces. Certain cubics—conjecturally, the ones that are rational—have specific K3 surfaces associated to them geometrically. Hassett has studied cubics with K3 surfaces associated to them at the level of Hodge theory, and Kuznetsov has studied cubics with K3 surfaces associated to them at the level of derived categories. These two notions of having an associated K3 surface should coincide. We prove that they coincide generically: Hassett’s cubics form a countable union of irreducible Noether–Lefschetz divisors in moduli space, and we show that Kuznetsov’s cubics are a dense subset of these, forming a nonempty, Zariski-open subset in each divisor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.