Abstract

Building on Fujita-Griffiths method of computing metrics on Hodge bundles, we show that the direct image of an adjoint semi-ample line bundle by a projective submersion has a continuous metric with Griffiths semi-positive curvature. This shows that for every holomorphic semi-ample vector bundle $E$ on a complex manifold, and every positive integer $k$, the vector bundle $S^kE\otimes\det E$ has a continuous metric with Griffiths semi-positive curvature. If $E$ is ample on a projective manifold, the metric can be made smooth and Griffiths positive.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.