Abstract

The closed loops or cycles in a brain network embeds higher order signal transmission paths, which provide fundamental insights into the functioning of the brain. In this work, we propose an efficient algorithm for systematic identification and modeling of cycles using persistent homology and the Hodge Laplacian. Various statistical inference procedures on cycles are developed. We validate the our methods on simulations and apply to brain networks obtained through the resting state functional magnetic resonance imaging. The computer codes for the Hodge Laplacian are given in https://github.com/laplcebeltrami/hodge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.