Abstract

For an arbitrary semisimple Frobenius manifold we construct Hodge integrable hierarchy of Hamiltonian partial differential equations. In the particular case of quantum cohomology the tau-function of a solution to the hierarchy generates the intersection numbers of the Gromov–Witten classes and their descendents along with the characteristic classes of Hodge bundles on the moduli spaces of stable maps. For the one-dimensional Frobenius manifold the Hodge hierarchy is an integrable deformation of the Korteweg–de Vries hierarchy depending on an infinite number of parameters. Conjecturally this hierarchy is a universal object in the class of scalar Hamiltonian integrable hierarchies possessing tau-functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.