Abstract

We show how Ho\v{r}ava-Lifshitz (HL) theory appears naturally in the Ashtekar formulation of relativity if one postulates the existence of a fermionic field playing the role of aether. The spatial currents associated with this field must be switched off for the equivalence to work. Therefore the field supplies the preferred frame associated with breaking refoliation (time diffeomorphism) invariance, but obviously the symmetry is only spontaneously broken if the field is dynamic. When Dirac fermions couple to the gravitational field via the Ashtekar variables, the low energy limit of HL gravity, recast in the language of Ashtekar variables, naturally emerges (provided the spatial fermion current identically vanishes). HL gravity can therefore be interpreted as a time-like current, or a Fermi aether, that fills space-time, with the Immirzi parameter, a chiral fermionic coupling, and the fermionic charge density fixing the value of the parameter $\lambda$ determining HL theory. This reinterpretation sheds light on some features of HL theory, namely its good convergence properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.